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1 NETWORK ARCHITECTURE DETAILS
We describe more details on the Siamese encoder and the fast de-
coder of our model. An illustration is provided in Fig.1.

Encoder.The Siamese encoder is a fully convolutional network
adopted from ResNet-50 [2] and pre-trained on ImageNet [3]. We
remove the FC layers, and replace the last downsampling layer
with a dilated convolutional layer to preserve more fine-grained
information. In order to reduce the amount of calculation, a 1 × 1
convolutional layer and a 3 × 3 convolutional layer are connected
to the end of the encoder, reducing the output feature dimension
to 256. The features from the last layer are employed for the in-
stance center offset prediction and the correlation calculation. We
then apply a 2 × 2 average pooling to the template feature for less
computational complexity.

Decoder.After the fusion feature mapMf usion is extracted, we
apply a pyramid decoder to generate the final segmentation. The
decoder is mainly built with Multi-Scale Blocks [8] and Residual
Blocks [2]. We also utilize Squeeze Blocks to decreases the compu-
tational complexity. Details on the Squeeze Block and the Multi-
Scale Blocks are shown in Fig.1. The features from the stage-2,
stage-3 and stage-4 of the encoder are fed to the decoder to in-
troduce low-level features. Note that the normalization layers are
instance normalization layers [7] in our decoder.

2 MORE INFERENCE DETAILS
The input image of the network is cropped and resized based on
the approximate position of the object. Inspired by related work on
video object tracking [1], we utilize temporal smoothing to prevent
prediction jitter. Denote the width and the height of the predicted
mask at timestamp t by w̃t and h̃t . The bounding box for cropping
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is updated as follows:

wt = 0.5 ×wt−1 + 0.5 × 1.5 × w̃t

ht = 0.5 × ht−1 + 0.5 × 1.5 × h̃t

w0 = 1.5 × w̃0

h0 = 1.5 × h̃0

(1)

wherewt and ht are the updated width and height. Afterward, the
image patches are resized to 480 × 854.

3 VIDEO COMPARISONS ON DIFFERENT
METHODS

In the attached video file Comparisons.mp4, we provide qualita-
tive comparison with two state-of-the-art VOS methods, including
RANet [8], PReMVOS [4], and RGMP [9]. The videos are sample
from the DAVIS [5],[6] benchmark. The results of other methods
are obtained through the official code.

4 FAILURE CASES
We analyze the shortcomings of our model by showing some fail-
ure cases in the video file FailureCase.mp4. The instance center off-
set prediction relies on the instance center obtained in the previous
frame, and noise may be generated when the target is largely oc-
cluded. In addition, in the multi-object segmentation task, process-
ing each target individually cannot make full use of the informa-
tion between the targets, and overlaps will occur. We look forward
to addressing these two issues in future work.
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Figure 1: An illustration of the encoder and the decoder architecture.3


	1 Network Architecture Details
	2 More Inference Details
	3 Video Comparisons on Different Methods
	4 Failure Cases
	References

