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ABSTRACT

Metric learning plays a critical role in person re-identification
problem. Unfortunately, due to the small size of training data,
the metric learning used in this scenario suffers from over-
fitting which leads to degenerated performance. In this paper,
we investigate the effect of regularization in metric learning
for person re-identification. Concretely we formulate the dis-
tance function from three perspectives and hence present four
different regularized metric learning methods. Experiments
on two popular benchmark data sets VIPeR and CUHK01
validate the effectiveness of our proposed regularization ap-
proaches.

Index Terms— Person Re-identification, Metric Learn-
ing, Regularization

1. INTRODUCTION

Nowadays, video surveillance networks are widely deployed
in the areas of city, highway, airports, train stations, and etc.
The massive captured surveillance videos contain important
cues for the public security. Therefore, automatically verify-
ing the identity of a person from non-overlapping surveillance
camera views becomes one of the most critical tasks in video
content analysis. This is the problem termed as Person Re-
Identification (Re-ID) [1]. Although it is easy to understand
that the process of Re-ID is to match a probe image against a
gallery set, it is indeed quite challenging, due to the large vari-
ations in illumination and pose, and complicated background
cluttering. We display some paired images in Fig. 1 from two
benchmark data sets to show the difficulties in Re-ID prob-
lem.

2. RELATED WORK

Over the past a few years, Re-ID problem has received a large
amount of attention and dozens of methods have been pro-
posed [4, 5, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
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Fig. 1. Paired images in (a) and (b) are from data sets VIPeR
[2] and CUHK01 [3], respectively. Images boxed in red and
green are paired candidates need to re-identify.

Roughly, the existing methods can be divided into two cate-
gories: feature representation based methods [6, 7, 8, 9, 10,
11, 12, 13, 19] and metric learning based methods [14, 15,
16, 17, 4, 18, 5].

Extracting features with powerful representative ability is
one of the critical components in Re-ID problem. It has been
demonstrated that incorporating body parts layout informa-
tion into feature extraction is very effective for Re-ID. For ex-
ample, [6, 20] demonstrated that constructing the symmetry-
driven accumulation features from body parts and weight-
ing them according to the body symmetric axis was useful,
[19] also gave an alternative to extract and weight features
via Region-of-Interest, [8, 9, 12] shown that introducing the
saliency information to measure the discriminative and repre-
sentative ability of local features was effective, and [13, 21]
validated the usefulness of incorporating the semantic part-
based appearance changes. While the aforementioned sophis-
ticated features improving the accuracy in a degree, they all
suffered from the requirement of rich priori knowledge of the
specific problem. Besides, it is usually difficult to find a suit-
able metric for the hand-crafted features and hence lead to de-
generated performance. Therefore, finding a distance (or sim-
ilarity) measure which is suitable for the features is another
critical component in Re-ID problem. This issue is addressed
by metric learning, e.g.[22, 23], which has been applied to
Re-ID problem recently [14, 4], [15], [17], [16], [5]. The ba-
sic idea is to learn a task-specific metric (space) from training
data such that the distance between images of the same iden-
tity is smaller than others. Zheng et al. [14, 4] proposed to
formulate Re-ID problem as a relative distance learning task
in which an optimal metric was learnt for pairwise images.
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Mignon [15] proposed to learn the distance metric by optimiz-
ing a decision function and Li et al. [17] gave a large-margin
solution. Kostinger et al. [16] proposed to derive the metric
learning from a statistical inference perspective. Xiong et al.
[5] presented a kernelized extension for the common metric
learning methods, and gained performance improvements. In
Re-ID problem, however, the paired training samples are far
from sufficient. Because of this, the aforementioned metric
learning formulations suffer from serious over-fitting which
significantly degenerates the generalization ability.

In this paper, we propose to accommodate the regulariza-
tion strategy to enhance the generalization ability of metric
learning methods for Re-ID problem. To be concrete, we
investigate the effects of the regularized metric learning with
three different metric function formulations. Experiments
conducted on two benchmark data sets VIPeR and CUHK01
confirm the effectiveness of our proposals.

3. OUR PROPOSAL: REGULARIZED METRIC
LEARNING

In this section, we introduce three different formulations of
the metric function and then present our proposal – regular-
ized metric learning. For clarity, we give some symbol nota-
tions here: the bold lowercase x, y ∈ Rd are the feature vec-
tors extracted from images, and `i ∈ {1, 2, 3, ..., c} indicates
the identity of i-th feature vector, and each pair of feature
vectors (xi, xj) or (xi, yj) has a matching score gij = +1 if
`i = `j otherwise gij = −1.

3.1. Different Formulations for Metric Function

Metric learning is to learn, by using training data, a task-
specific metric function, which can be formulated as follows:

d2M(x, y) = (x− y)TM(x− y), (1)

where M ∈ Sd+ in which Sd+ is the set of symmetry positive
semi-definite (PSD) matrices. Note that with the constraint
M ∈ Sd+, we can express M as LTL, where L ∈ Rk×d is of
rank k, and thus reformulate the metric function as follows:

d2M(x, y) = (Lx− Ly)T (Lx− Ly). (2)

By using the reformulation (2), we observe the connection
between supervised metric leaning and supervised linear di-
mensionality reduction.

Considering of that the feature vectors x and y for Re-
ID are extracted in images from different cameras, we further
modify the formulation (2) to tolerant camera-specific projec-
tions as follows:

d2M(x, y) = (Lx−Hy)T (Lx−Hy), (3)

where L,H ∈ Rk×d.

The three formulations in (1), (2) and (3) are used in three
different metric learning approaches. In the next subsection,
we investigate regularization technique for each of them.

3.2. Regularized Metric Learning

Regularization is an effective strategy to tackle with an ill-
posed problem. In this paper, we attempt to adopt the regu-
larization into metric learning methods for Re-ID. To be spe-
cific, we modify three different metric learning approaches –
Large Margin Nearest Neighbors (LMNN) [22], Linear Dis-
criminant Analysis (LDA), and Decision Function Learning
(DFL) [15, 17] – into their regularized formulations, and then
solve each of them efficiently.

3.2.1. Regularized Large Margin Nearest Neighbors

Define a target neighbors set for each input x as those data
points that are desired to be close to x, and an impostors set
as those points are closer than target neighbors but labeled
differently. LMNN seeks a PSD matrix M by pulling tar-
get neighbors together and pushing imposters away simulta-
neously, which can be formulated as follows:

min
M∈Sd+

(1− µ)
∑
i,j i

d2M(xi, xj) + µ
∑
i,j i,l

(1− gil)ξijl,

s.t. d2M(xi, xl)− d2M(xi, xj) ≥ 1− ξijl, ξijl ≥ 0,

(4)

where 0 ≤ µ ≤ 1 is the weighting parameter to balance
pulling and pushing effects, j  i denotes that xj belongs to
the target neighbors of xi, and d2M(·, ·) is described as Eq. (1).

While problem (4) could be solved with Semi-Definite
Programming (SDP) solver, the lack of training data makes
LMNN prone to over-fitting. To this end, we propose to add a
nuclear norm ‖M‖∗ as a regularizer to problem (4) and hence
lead to a nuclear norm Regularized LMNN (nuLMNN) prob-
lem as follows:

min
M∈Sd+

∑
i,j i

(1− µ)d2M(xi, xj)+
∑
i,j i,l

µ(1− gil)ξijl+λ‖M‖∗

s.t. d2M(xi, xl)− d2M(xi, xj) ≥ 1− ξijl, ξijl ≥ 0,

(5)

where λ is regularization parameter. Note that for a PSD ma-
trix M, we have tr(M) = ‖M‖∗ and thus we also term prob-
lem (5) as trace regularized LMNN (trLMNN). Another way
to regularize problem (4) is by using a LogDet divergence
term [23], which is the differential relative entropy between
two multivariate Gaussians under constraints on two covari-
ance matrices, as follows:

Dld(M,M0) = tr (MM−10 )− log det (MM−10 )− d, (6)

where M,M0 ∈ Sd+, and M0 is usually set as an identity
matrix I. Similarly, by adding λDld(M,M0) into problem
(4), we obtain a LogDet regularized LMNN (ldLMNN). Note
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that, to solve the regularized LMNN problems (trLMNN and
ldLMNN), we need only modify the definitions of the gra-
dient of the objective function in trLMNN and ldLMNN, re-
spectively as follows:

Gt = (1− µ)
∑
i,j i

Cij + µ
∑
i,j i,l

(Cij − Cil) + λI (7)

Gt=(1− µ)
∑
i,j i

Cij+µ
∑
i,j i,l

(Cij−Cil)+λ(I− det (Mt)M−1t )

(8)

where Cij = (xi − xj)(xi − xj)T . Since matrix Mt may not
be invertible, we instead use M̂t = (1− α)Mt +

α
N tr (Mt)I

where 0 ≤ α ≤ 1 and N is the number of samples.

3.2.2. Regularized Linear Discriminant Analysis

LDA is the most popular supervised dimensionality reduc-
tion method, and has many variations , e.g. Local Fisher Dis-
criminant Analysis (LFDA) [24] and Marginal Fisher Anal-
ysis (MFA) [5]. One of the advantages of these methods is
that the optimal solution can be found by solving a general-
ized eigenvalue problem. The objective optimization of these
methods are usually defined as follows:

max
L∈Rk×d

tr(LSbLT )
tr(LSwLT )

, (9)

where Sw ∈ Rd×d is the intra-class scatter matrix and Sb ∈
Rd×d is inter-class scatter matrix. For the objective function
as above, the intra-class scatter matrix Sw should be invertible
to guarantee the feasibility of optimization. However, if the
sample size N is smaller than the feature dimensionality d,
Sw will be singular. In this case, we have a regularized term
instead of Sw as follows

Ŝ
w
= (1− α)Sw +

α

N
tr (Sw)I, (10)

where 0 ≤ α ≤ 1 and N is the number of samples. We call it
stable Linear Discriminant Analysis (sLDA).

3.2.3. Regularized Decision Function Learning

For a linearly separable classification problem, one can find
an optimal hyperplane f(·) = 0 so that all positive samples
lie on one side and all negative samples lie on another side.
The ultimate goal of Re-ID is to distinguish whether input
pairwise example (xi, xj) represents the same individual or
not, so it can also be formulated to learn a decision hyper-
plane f(·, ·) = 0. The decision function is formulated as
f(xi, xj) = d2M(xi, xj)− t, where t is the bias.

The previous metric learning approaches for Re-ID usu-
ally assume that elements of input pairs come from the same
feature space, which is denoted as (xi, xj). However, the

pairwise samples in Re-ID are captured from different non-
overlapping cameras, which can be denoted as (xi, yj). For
this reason, the projection matrices, i.e. L,H ∈ Rk×d, should
be different. To this end, we reformulate the metric function
with camera-specific projections as in Eq. (3).

In this paper, we consider xi and yj come from different
feature spaces, and t takes a quadratic form, (which is slightly
different with [17]), as follows:

t(xi, yj) =
1

2
xTi Ãxi +

1

2
yTj B̃yj + xTi C̃yj

+ wT (xi + yj) + w0,
(11)

where Ã ∈ Sd, B̃ ∈ Sd, C̃ ∈ Rd×d,w ∈ Rd,w0 ∈ R, and
Sd are symmetry matrices. Now the decision function can be
rewritten as follows

f(xi, yj) = d2M(xi, yj)− t(xi, yj)

=
1

2
xTi Axi +

1

2
yTj Byj − xTi Cyj − wT (xi + yj)− w0,

(12)

where A = 2LTL− Ã, B = 2HTH− B̃, and C = 2LTH+ C̃.
It is easy to show that A ∈ Sd and B ∈ Sd are both symmetry
matrices and C ∈ Rd×d is not necessary to be symmetric.

The optimal hyperplane can be solved via a regularized
Decision Function Learning (rDFL), i.e., minimizing the loss
function with a regularizatioin term as follows:

min
Θ

E(Θ) =
∑
i

∑
j

hβ
(
gijf(xi, yj)

)
+R(Θ), (13)

where Θ = {A,B,C,w}, R(Θ) = λ1||A||2F + λ2||B||2F +
λ3||C||2F , and hβ(x) = 1

β log(1+ eβx) is the smooth approx-
imation of the hinge loss. This optimization problem can be
solved via a gradient descent, which minimizes with respect
to A, B, C, and w alternately.

4. EXPERIMENTS

4.1. Experimental Settings

Feature Extraction. We extract the local features from slid-
ing windows. We normalize each image into 128 × 48 and
then slide a 16 × 16 window with 8 pixels overlapping. The
8-bins histogram and 3-dimensional color moments from the
HSV and YUV color channels, as well as the 10-dimensional
rotation invariant uniform Local Binary Patterns (LBP) from
gray-scale image, are extracted from each patch. And then
we obtain a 5700-dimensional feature vector by concatenat-
ing them together. Finally PCA is used to reduce the features
into dimension 250.1

Data Set Preparing. We evaluate our proposed regular-
ized approaches on two widely used benchmark data sets:

1Note that we reduce separately the features extracted from HSV and
YUV channels and LBP features into dimensions 160, 40, 50 by PCA.
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Fig. 2. Performance of proposed methods on VIPeR.

Table 1. Matching Rate on VIPeR.
Method Rank1 Rank5 Rank10 Rank20
SCNCD[12] 33.7% 62.7% 74.8% 85%
SDALF[6] 19.9% 38.9% 49.4% 65.7%
SDC[9] 26.7% 50.7% 62.4% 76.4%

kMFA[5] 31.1% 65.2% 79.6% 90.2%
LFDA[5] 21.5% 49.6% 64.6% 79.1%
LADF[5] 30.1% 63.2% 77.4% 88.1%

LMNN 23.2% 54.0% 67.5% 80.8%
trLMNN 27.8% 57.3% 71.7% 84.0%
ldLMNN 28.2% 59.3% 72.4% 84.6%
LDA 12.1% 30.7% 43.5% 57.7%
sLDA 27.0% 58.7% 72.2% 83.8%
DFL 25.6% 55.5% 69.8% 81.9%
rDFL 28.5% 61.7% 75.0% 87.0%
rDFL(A=B) 32.0% 63.9% 77.0% 88.6%

VIPeR [2] and CUHK01 [3]. Some sample pairs are dis-
played in Fig. 1. Both of the two data sets contain images
captured from two disjoint cameras with different illumina-
tion, low resolution and changing poses. Data set VIPeR
contains 632 pairs of pedestrian images captured in outdoor
academic environment. Each pair include one image from
camera-A and one image from camera-B. Since trLMNN,
ldLMNN, sLDA, and other metric learning methods, except
for DFL, do not need the camera-specific projections, so we
randomly choose one of the pairwise images to compose the
gallery set and leave the other one as a probe. However, the
camera labels are useful for DFL, so we regard images from
camera-A as probe set and regard images from camera-B
as gallery set for DFL and the regularized DFL. Data set
CUHK01 contains 971 pedestrians images (which is a multi-
shot to multi-shot data set). Each pedestrian has four images,
including two captured from camera-A and two captured
from camera-B. The partition protocol of gallery and probe
set on this data set is the same as VIPeR, except that only
one image from each camera was randomly chose for every
pedestrian to comprise gallery or probe set.
Evaluation Protocol. We evaluate our proposed regularized
metric learning methods on VIPeR and CUHK01, by calcu-
lating Cumulative Matching Characteristic (CMC) curve. We

1 3 5 7 9 11 13 15
20

30

40

50

60

70

80

Rank

M
a
tc

h
in

g
 R

a
te

 (
%

)

LMNN

trLMNN

ldLMNN

LDA

sLDA

DFL

rDFL

rDFL(A=B)

Fig. 3. Performance of proposed methods on CUHK01.

randomly split the data into 50% for training and 50% for
testing, and record the average matching rate over 10 trials.
Parameter Settings. For trLMNN and ldLMNN, we set λ =
104. For sLDA and ldLMNN, we set α = 0.5. And for rDFL,
λ1 = 0.6, λ2 = 0.6, λ3 = 0.9.

4.2. Results

We show the CMC curves of our proposed methods on data
sets VIPeR and CUHK01 in Fig. 2 and Fig. 3, respectively.
Note that, for DFL the pairwise samples consist of two im-
ages from different cameras, whereas the pairwise samples
can be selected from any cameras (the same one or not) for
other metric learning methods. Thus the number of training
samples for DFL is much less than the number for others.
While the lack of training sample lowers the matching rate of
DFL, it still shows that regularization can improve the match-
ing rate significantly. In particular, for matching rate on rank
1, the average improvement is about 4% of all these four reg-
ularized methods.

We also compare our approaches with three popular met-
ric learning methods, i.e., kMFA [5], LFDA [24], LADF [17].
Since that our feature representation method is similar to [5],
we directly cite the results from [5]. In addition, we also list
other three state-of-art non-metric learning methods, i.e., SC-
NCD [12], SDALF [6], SDC [9]. The comparison is listed in
Table 1. Notice that the methods with regularization consis-
tently improve the Re-ID performance. In particular, for rank
1 matching rate on VIPeR, trLMNN and ldLMNN improve
the rate by 3% ∼ 5% from LMNN, sLDA gets 15% improve-
ment from LDA. Furthermore, rDFL catches up with the best
metric learning method in Re-ID at 32.0%.

5. CONCLUSION

In this paper, we investigated the effect of regularization in
metric learning for person re-identification. Concretely we
formulated the distance function from three perspectives and
hence presented four different regularized metric learning
methods. Experiments conducted on two benchmark data
sets VIPeR and CUHK01 confirmed the effectiveness of our
proposals.
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