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Abstract—Person re-identification (Re-Id) across nonover-
lapping camera views is one of challenging problems in surveil-
lance video analysis. The difficulties in person Re-Id mainly
come from the large appearance variations caused by camera
view angle, human pose, illumination, and occlusion. Recently,
extensive efforts have been cast into addressing this problem by
developing invariant features or discriminative distance metrics.
However, there is still a lack of systematic evaluations on the
pipeline for feature extraction and combination. In this paper,
we propose a spatial pyramid-based statistical feature extrac-
tion framework as a unified pipeline of feature extraction and
combination for person Re-Id, and systematically evaluate the
configuration details in feature extraction and the fusion strate-
gies in feature combination. Extensive experiments on benchmark
datasets demonstrate the critical components in feature extrac-
tion. Moreover, by combining multiple features, our proposed
approach can yield state-of-the-art performance. It should be
mentioned that our approach achieves rank 1 matching rate
of 45.8% on dataset VIPeR and 61.5% on dataset CUHK01,
respectively.

Index Terms—Multiple kernel local Fisher discriminant analy-
sis (mkLFDA), person re-identification (Re-Id), spatial pyramid-
based statistical features.

I. INTRODUCTION

NOWADAYS, visual surveillance cameras are widely
deployed in airports, train stations, and other important

venues. The captured surveillance videos contain important
cues for the public security (e.g., [1]–[4]). Thus, automatically
verifying the identity of a pedestrian from nonoverlapping
surveillance camera views is increasingly becoming one of
the most critical tasks in video analysis. This is the problem
termed as person re-identification (Re-Id) [1].

One commonly used approach to tackle person Re-Id task is
to formulate it as an image matching or verification problem,
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Fig. 1. Person Re-Id. (Left) Images captured from disjoint camera views.
(Right) Each line contains a probe image, and the corresponding ranked
gallery set, where the true match is marked in red box.

where matching each instance from the probe set (captured
from one camera view) against all from the gallery set
(captured from another disjoint camera view) (see Fig. 1).
Unfortunately, the large variations in person appearance due
to view angle, pose, illumination, and occlusion make the
accurate matching quite difficult. Therefore, extensive efforts
have been cast into designing cross-view invariant features or
metrics, e.g., [5]–[13].

On one hand, it has been verified that the local statistical
features, such as color or oriented gradients histogram [14],
are effective for person Re-Id, e.g., [5]–[7] and [15]. These
works try to either aggregating local features to global rep-
resentation, e.g., [6] and [16], or mapping features from one
camera view to another, e.g., [17] and [18]. On the other hand,
multiple visual traits (e.g., color, texture, and spatial structure)
are jointly used to describe the individual appearance, via
either concatenating different descriptors, e.g., [8] and [11],
or weighting different distance metrics, e.g., [5] and [19].
While these works have improved the Re-Id performance,
however, there is still a lack of comprehensive evaluations
on the detailed configurations of feature extraction and the
strategies for features combination.

In this paper, we propose a unified pipeline, as illustrated
in Fig. 2, for extracting and combining multiple statisti-
cal features for person Re-Id. To be more specific, we
extract five types of spatial pyramid-based statistical features,
including spatial pyramid-based color histogram (spHist), spa-
tial pyramid-based histogram of oriented gradient (spHOG),
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Fig. 2. Pipeline of our proposed framework.

spatial pyramid-based local binary pattern (spLBP), spatial
pyramid-based color names (spCNs), and spatial pyramid-
based covariance feature (spCov), and combine them via
multiple kernel local Fisher discriminant analysis (mkLFDA).
Moreover, we conduct comprehensive experiments on four
benchmark datasets to evaluate the critical components in
detailed configurations of feature extraction and also the effec-
tiveness of different strategies for combining multiple features.
In addition, we show in experiments that our framework can
yield state-of-the-art performance on benchmark datasets when
properly combining multiple features.

The main contributions of this paper are highlighted as
follows.

1) We propose a unified pipeline for extracting and combin-
ing spatial pyramid-based statistical features for Re-Id.

2) We conduct extensive evaluations on detailed configura-
tions in feature extraction and on different strategies for
feature combination.

3) Experimental results on four benchmark datasets demon-
strate that our proposed approach is comparable or even
surpassing the state-of-the-art performance.

The rest of this paper is organized as follows. In Section II,
we review the related works. In Section III, we present the
detailed pipeline of our framework. Extensive experimental
evaluations are provided in Section IV. We conclude with
discussion in Section V.

II. RELATED WORK

In person Re-Id, appearance changes caused by camera con-
figuration, human pose, and photographic environment lead
to large intraclass/interclass variations and make the problem
difficult to tackle. Therefore, extensive efforts have been paid
to address this difficulty. Roughly, the existing works can be
divided into two categories.

1) Constructing invariant and discriminative representation,
e.g., [5]–[7], [16], and [19]–[32].

2) Learning discriminative distance metric, e.g., [7]–[12],
[15], [18], and [33]–[41].

Almost all of these works make their own contributions
upon local statistical features. Zhao et al. [6], [16] weighted
the local statistical features by human saliency, and many
researchers [26]–[28] proposed to learn a robust higher-
level attribute representation from the basic local statistical
features. In the metric or subspace-based methods, usually,

local statistical features are used as the appearance rep-
resentation and a more discriminative metric or projection
space is learned to further improve the Re-Id performance,
e.g., Zheng et al. [12], [37] formulated person Re-Id as a rel-
ative distance comparison learning problem, Xiong et al. [15]
introduced kernel trick into linear metric models to improve
the model performance.

In addition, there exist a number of works dealing
with person Re-Id from other perspectives. For exam-
ple, dictionary learning and sparse representation were
used to cope with the appearance transformation across
camera views and obtained a more robust feature sub-
space [17], [42]–[47], patches correspondence between image
pairs was learned to alleviate the spatial misalignment [48],
the space of feature transformation was invested to reiden-
tify individuals [39], [49], and recently, deep learning was
also introduced to boost the Re-Id performance [29], [30].
Besides, there are also some interesting works for Re-Id from
miscellaneous ways, e.g., via partial-body [42], gait infor-
mation [50], super-resolution [46], [51], multishot [52], [53],
cross-domain [54], [55], camera-network [56], or dealing with
large-scale dataset [57], [58].

Although these existing works have improved the Re-Id
performance significantly, they have not exploited the full
potential of the representation due to lacking of efforts to
systematically analyzing local statistical features themselves.
Nevertheless, making a better use of feature representation is
a crucial component to further improve the performance.

In the past decade, feature extraction framework based on
spatial pyramid matching (SPM) [59], [60] and integral chan-
nel features (ChnFtrs) [61] have achieved great successes in
image categorization and object detection tasks, respectively.
However, neither of them is suitable for Re-Id due to the
following two characteristics of this task.

1) Person Re-Id is a fine-grained classification problem to
classify each person with the corresponding identity, so
the feature representation needs to be more discrimi-
native than that extracted through SPM for category
classification.

2) The feature for Re-Id should also be invariant across
camera views, so more attentions need to be paid on
constructing robust higher-level features instead of reg-
istered primary image channels of ChnFtrs. Thus, Re-Id
needs a specific framework.

In this paper, we propose a unified pipeline, which inte-
grates SPM and ChnFtrs, to construct spatial pyramid-based
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Fig. 3. Examples of image channels. (a) Original image. (b)–(e) Primary image channels. (f) and (g) Advanced image channels.

statistical features for person Re-Id, and then combine the
extracted multiple features by mkLFDA.

III. PROPOSED FRAMEWORK

In this section, we present a unified pipeline to extract
and combine five spatial pyramid-based statistical features
for person Re-Id. For clarity, we illustrate the flowchart of
the pipeline in Fig. 2. The pipeline consists of five succes-
sive stages: 1) generating primary channels; 2) constructing
advanced channels; 3) extracting local region statistical fea-
tures; 4) features aggregation; and 5) features combination.

A. Generating Primary Image Channels

Image channels can be regarded as the feature maps of the
original image, where each output pixel is computed from the
input pixels in the corresponding spatial region. The primary
image channels are usually derived from single channel images
with simple process. Specifically, given a single channel image
I ∈ R

H×W , where H and W denote the height and width
of image I, respectively. The primary image channels can be
denoted as C = �(I) ∈ R

H×W , where � is a simple transform,
e.g., linear filtering, identity transformation, and nonlinear or
pixel-wise transformations as in [61].1 These channels carry
on sufficient information to compute more powerful discrim-
inative features. In this paper, we use four primary channels:
1) intensity channels; 2) coordinate channels; 3) gradient chan-
nels; and 4) local binary pattern (LBP) [62]. For completeness,
we give a brief review on each of these primary channels.

1) Intensity Channels: Identity transformation is the sim-
plest way to generate primary image channels. These channels
contain all details of the original image. In Fig. 3(b), we
display the gray and HSV color intensity channels, separately.

2) Coordinate Channels: A pixel in an image contains
both intensity and location information. In this paper, we
take the coordinates of each pixel to compose coordinate
channels. Although it seems useless for discriminating indi-
viduals by itself, it could make great contributions to construct
spatial-keeping features when combined with other channels.

1It also should be pointed out that, to maintain the size of the image chan-
nels unchanged, we pad the original image with the mirror pixels of the
boundaries.

3) Gradient Channels: Gradient in an image is to describe
the directional intensity changes in a local region, which char-
acterizes the object shape or texture. In this paper, we use
a simple gradient kernel k = [−1, 0, 1]T to extract four
types of gradient features, i.e., horizontal gradient amplitude
(C|Gx| = |I⊗kT |), vertical gradient amplitude (C|Gy| = |I⊗k|),
gradient magnitude (C|Gxy| = √

(I ⊗ k)2 + (I ⊗ kT)2), and
gradient orientation (CGθ = atan2(I ⊗ k, I ⊗ kT) + π), where
⊗ denotes discrete convolution and atan2(., .) calculates the
four quadrant arctan.

4) LBP Channel: LBPs are binary sequences determined by
the signs of the intensity difference between the central pixel
and its neighboring pixels, which are invariant to monotonic
transformation of intensity image. In this paper, we take a
quantized LBP image as a primary image channel, which is
generated by sliding a mask window of 3 × 3 over the image
followed by quantization.

To gain some intuition of different primary channels, we
illustrate them in Fig. 3(b)–(e).

B. Constructing Advanced Image Channels

Advanced channels are constructed over a set of primary
channels for fast calculation of statistical features. Specifically,
given a set of primary channels C = {C(m) ∈ R

H×W ,

m = 1, . . . , M}, the advanced channels are generated as
CA = �(C) ∈ R

H×W×N , where the bold � denotes a mapping
function which corresponds to encoding or multiplying oper-
ation. For clarity, we displayed some examples of advanced
image channels in panels (f) and (g) of Fig. 3.

1) Encoded Image Channels: Given an image with M pri-
mary channels and a predefined codebook V = {vn ∈ R

M,

n = 1, . . . , N}, the M-dimensional feature vector fij at each
pixel (i, j) is encoded with respect to the codebook as N coef-
ficients {an

ij, n = 1, . . . , N}. Then, the nth encoded channel is
generated as C(n)(i, j) = an

ij. This type of advanced channels is
used for the purpose of fast computing histogram-like features.

According to the encoding strategy, we sort the encoding
methods into hard encoding [e.g., histogram encoding (HE)]
and soft encoding [e.g., kernel codebook encoding (KCE),
linear interpolation encoding (LIE), and salient color encod-
ing (SCE)].
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a) Histogram encoding: Each feature vector fij is
encoded as an N-dimensional coefficient vector as follows:

an
ij = 1 if n = arg min

n′∈{1,...,N}
∥∥fij − vn′

∥∥2 (1)

otherwise an
ij = 0. This means that only the coefficient cor-

responding to the group to which fij belongs is assigned
to 1.

b) Kernel codebook encoding: KCE is based on ker-
nel density estimation, in which each feature vector fij is
encoded as

an
ij = k

(
fij, vn

)
/

N∑

l=1

k
(
fij, vl

)
(2)

where the kernel function is k(f, v) = exp(−(γ /2)||f − v||2).
c) Linear interpolation encoding: When encoding each

primary image channel (i.e., M = 1) separately, feature fij can
also be encoded as

an
ij = max

(
0, 1 − ∣∣ fij − vn

∣∣/b
)

(3)

where b is the interbin distance. The linear interpolation strat-
egy can be easily extended to 2-D or 3-D space, which leads
to bilinear or trilinear version used in [14].

d) Salient color encoding: When jointly quantizing the
three-channel color space into a discrete color name space,
SCE can also be adopted in [23]. At first, the color feature
space (denoted as F) is uniformly divided into 32 × 32 × 32
cubes {Fc, c = 1, . . . , 32768}, where each cube covers 512
color values, i.e., Fc = {f(l), l = 1, . . . , 512}. Then the prob-
ability of assigning each fij ∈ Fc to a color name vn is
defined as

an
ij = p(vn|Fc), for fij ∈ Fc (4)

where

p(vn|Fc) =
512∑

l=1

p
(

vn|f(l)
)

p
(

f(l)|Fc

)
(5)

in which if vn ∈ KNN(f(l)), then

p
(

vn|f(l)
)

=

exp

⎛

⎜⎜
⎝

−∥∥vn − f(l)
∥∥2

1

k − 1

∑
vp �=vn

∥∥vp − f(l)
∥∥2

⎞

⎟⎟
⎠

∑k
q=1 exp

⎛

⎜
⎝

−‖vq−f(l)‖2

1

k − 1
∑

vs �=vq‖vs−f(l)‖2

⎞

⎟
⎠

(6)

otherwise p(vn|f(l)) = 0, and

p
(

f(l)|Fc

)
=

exp
(
−α
∥∥f(l) − μc

∥∥2
)

∑512
t=1 exp

(
−α
∥∥f(t) − μc

∥∥2
) (7)

where k refers to the number of nearest neighbors, and μc is
the mean color vector of Fc.

Fig. 4. Illustration of local statistical features extraction. Three types of
statistical features, i.e., histogram, mean vector, and covariance matrix, are
computed by using the local sums on different image channels. (a) Image
channels. (b) Dense grid. (c) Statistical features.

2) Multiplied Image Channels: Multiplied channels are
multiplication of any two primary channels. Specifically, given
a set of primary channels C ∈ R

H×W×M , the multiplied
channel can be computed as

C(m1,m2) = C(m1) � C(m2) (8)

where C(m1), C(m2) ∈ C, and � denotes element-wise multipli-
cation. Similar to encoded channels, multiplied image channels
are used to facilitate the calculation of covariance feature
within a local region.

C. Extracting Local Statistical Features

Owning to the primary channels and advanced channels, the
statistical features (e.g., histogram, mean vector, and covari-
ances) in each region of interest (ROI) can be extracted
effectively. Given a set of channels, the sums over each ROI is
calculated from each channel separately at the same position,
then they are combined to construct a particular type of sta-
tistical feature. Specifically, four histogram-like features (i.e.,
spHist, spHOG, spLBP, and spCN) and one covariance fea-
ture (i.e., spCov) are extracted. The ROIs are defined as cells,
which are dense rectangles generated by gridding the input
channels, as illustrated in Fig. 4. After resizing each image
into 128 × 48, the cell size is set as 4 × 4 for spHist and
spCN, and 8 × 8 for others in our framework.

To speed up the local feature extraction, we also introduce
integral channels as intermediate channels for fast calculation
of region sums. Each pixel in the integral image can be calcu-
lated quickly by summing up all the pixels inside a rectangle
bounded by the upper left corner of the input image and the
pixel of interest. For an input channel C, its integral channel
is defined as

CIntg
(
i′, j′
) =

∑

i≤i′,j≤j′
C(i, j). (9)

Equipped with the integral channels, the local statistical
features can be calculated more efficiently. Let CIntg ∈
R

H×W×M, CIntg′ ∈ R
H×W×N, CIntg′′ ∈ R

H×W×M×M be the
integral image sets from primary channels, encoded chan-
nels, and multiplied channels, respectively. For simplicity, we
also denote the vector pi,j = CIntg(i, j, :), qi,j = CIntg′(i, j, :),
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and Ei,j = CIntg′′(i, j, :, :). Then, the mean vector over a cell
at {(i′, j′), (i′′, j′′)} is computed as

u(i′,j′;i′′,j′′) =
(
pi′′,j′′ + pi′−1,j′−1 − pi′−1,j′′ − pi′′,j′−1

)

S
the histogram over a cell is computed as

h(i′,j′;i′′,j′′) = (qi′′,j′′ + qi′−1,j′−1 − qi′−1,j′′ − qi′′,j′−1
)

and the covariance matrix [63] is calculated as

O(i′,j′;i′′,j′′) = 1

S − 1

[
Ei′′,j′′ + Ei′−1,j′−1 − Ei′−1,j′′ − Ei′′,j′−1

− Su(i′,j′;i′′,j′′)u(i′,j′;i′′,j′′)T]

where S = (i′′ − i′ + 1)( j′′ − j′ + 1).
Note that extracting local statistical features from the orig-

inal integral channels as in (9) suffers from a spatial aliasing
problem which is caused by the pixels near the cell bound-
aries.2 To alleviate this shortcoming, we introduced a spatial
trilinear interpolation step (as in [14]), i.e., by preconvolution
on the input channels with a predefined kernel as in [64]. In
this paper, the convolution kernel K for 4×4 or 8×8 cell-based
feature is defined as

1

16

⎡

⎣
1 2 1
2 4 2
1 2 1

⎤

⎦

or

1

256

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 2 3 4 3 2 1
2 4 6 8 6 4 2
3 6 9 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 9 6 3
2 4 6 8 6 4 2
1 2 3 4 3 2 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

where the weights are distributed according to the distance
between the position of pixels and their neighbors. Then the
convoluted integral channels are generated as

CIntg
(
i′, j′
) =

∑

i≤i′,j≤j′
CCov(i, j), where CCov = C ⊗ K.

Remark 1: To eliminate the variations caused by illumi-
nation changes and cluttering background, we take a local
contrast normalization for the extracted cell-based features.
Similar to [14], we group each 2 × 2 cells into a larger
half-overlapping block and normalize each block separately,
as illustrated in Fig. 4(b). The grouping is performed by
concatenating each cell-based feature for spHOG and by
averaging for others. Specifically, we consider five differ-
ent schemes as follows: 1) �1-norm, x → x/(‖x‖1 + ε);
2) �1-sqrt, x → √

x/‖x‖1 + ε; 3) �2-norm, x → x/(‖x‖2 +ε);
4) �2-clip, limiting the maximum values following the �2-
norm; and 5) �2

1-norm, x → x/(||x||21 + ε), where ε > 0
is a tiny constant. For covariance features, we normalize

2When doing encoding, a naive distribution scheme such as voting the
nearest codeword would result in aliasing effects. Similarly, when extracting
cell-based local features, pixels near the cell boundaries would produce alias-
ing along spatial dimensions. Such aliasing effects can cause sudden changes
in the computed feature vector.

Fig. 5. Multiscale pooling. In this paper, the input images are resized to
128 × 48, so after local normalization there are 31 × 11 block features for
spHist and spCN, and 15 × 5 block features for others.

these block-based covariance matrices Oblock as Oblock →
diag(Oblock)

−(1/2)Oblockdiag(Oblock)
−(1/2), then we stack the

upper triangular part of the covariance matrix into a feature
vector due to symmetry. After that, the covariance features can
be normalized as vectorial features.

D. Features Aggregation

1) Pooling: In our framework, we extract spatial pyra-
mid features by multiscale pooling, as illustrated in Fig. 5.
Specifically, after pooling, spHist and spCN consist of features
extracted from 31×11+15×5+7×2+6×1 = 436 blocks,
and other features are extracted from 15×5+7×2+6×1 = 95
blocks. We evaluate two pooling methods: 1) average pooling
and 2) max pooling.

2) Spatial Pyramid: As in SPM framework, the final fea-
tures are aggregated in a spatial pyramid way by combining
the multiscale features. For simplicity and computational effi-
ciency, we directly stack the multiscale features as a concate-
nated vector. Moreover, normalization is also applied on both
the single-scale features and the final concatenated features.

To evaluate spatial pyramid-based features, we compare two
components: 1) spatial scale and 2) normalization method. To
be more specific, we compare multiscale features to single-
scale features, and evaluate two normalization methods (i.e.,
�1-norm and �2-norm).

For clarity, we illustrate the data articulation flow by differ-
ent processing operations in the feature extraction pipeline in
Fig. 6. The default settings of extracting the spatial pyramid-
based statistical features, i.e., spHist, spHOG, spLBP, spCN,
and spCov, and also settings of extracting the original features,
i.e., color histogram (Hist), HOG [14], LBP [65], salient color
names (SCNs) [23] and covariance matrix (Cov) [63] are listed
in Table I.

E. Features Combination Based on mkLFDA

1) Kernel Local Fisher Discriminant Analysis: kLFDA [66]
aims to simultaneously maximize the interclass separability
and minimize the intraclass variance while preserving the
local neighborhood structure. The optimization objective is as
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Fig. 6. Data flow of our feature extraction pipeline. The texts on top indicate the data types, and the texts in bottom show the corresponding operations.

TABLE I
CONFIGURATION SETTINGS FOR DIFFERENT FEATURES EXTRACTION

follows:

max
A

tr
(

AT S̃(b)A
)/

tr
(

AT S̃(w)A
)

(10)

where tr(·) is the trace of a matrix, A ∈ R
s×d is the projection

matrix, and s is the data size. S̃(b) and S̃(w) denote the between-
class and within-class local scatter matrix, respectively, in
which S̃(b) = (1/2)

∑s
i,j=1 W̃(b)

ij (ki − kj)(ki − kj)
T ∈ R

s×s

and S̃(w) = (1/2)
∑s

i,j=1 W̃(w)
ij (ki − kj)(ki − kj)

T ∈ R
s×s,

where ki = [κ(x1, xi), . . . , κ(xs, xi)]T ∈ R
s, W̃(b) and

W̃(w) denote the weight matrices of the between-class and
within-class local adjacency graph, respectively.

Problem (10) can be solved by the generalized eigenvalue
problem as S̃(b)A = λ̃S(w)A, where the optimal A∗ ∈ R

s×d′
is

composed of the d′ leading eigenvectors corresponding to the
d′ largest eigenvalues.

2) Multiple Kernel Local Fisher Discriminant Analysis:
Instead of designing hand-crafted kernel for the input data,
MKL automatically learns an ensemble kernel κ(·, ·) over a
given set of kernels κ(p)(·, ·). In this paper, the ensemble kernel
function is defined as

κ
(
x, x′) =

P∑

p=1

βpκ
(p)
(
x, x′) (11)

where βp ≥ 0 for p = 1, . . . , P. Different kernels correspond
to the similarities defined by using different functions or using
inputs from different representations. Then, by replacing the
Fisher discriminant ratio in (10) with its equivalent quadratic
transformation, we formulate mkLFDA as

min
A,β

tr
(

AT S̃(w)
β A
)
, s.t. tr

(
AT S̃(b)

β A
)

= 1 and β ≥ 0 (12)

where

β = [β1, . . . , βP]T ∈ R
P (13)

K
(i) =

[
k(1)

i , . . . , k(P)
i

]
∈ R

s×P (14)

S̃(w)
β =

s∑

i,j=1

1

2
W̃(w)

ij

(
K

(i) − K
(j)
)
ββT
(
K

(i) − K
(j)
)T

S̃(b)
β =

s∑

i,j=1

1

2
W̃(b)

ij

(
K

(i) − K
(j)
)
ββT
(
K

(i) − K
(j)
)T

. (15)

3) Optimization Algorithm: Instead of optimizing A and β

simultaneously, we follow the iterative optimization strategy
in [67], i.e., alternately updating one variable with the other
fixed.
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Fig. 7. Examples of person images from different datasets. (a) VIPeR.
(b) CUHK01. (c) PRID2011. (d) 3DPeS.

With β fixed, mkLFDA retrogresses to kLFDA as in (10),
and can be solved as a generalized eigenvalue problem. With A
fixed, mkLFDA can be reformulated as a nonconvex quadrat-
ically constrained quadratic programming problem, which
can be solved efficiently via its semidefinite programming
relaxation [67] as

min
β,B

tr
(

S̃(w)
A B
)

s.t. tr
(

S̃(b)
A B
)

= 1, β ≥ 0, and

[
1 βT

β B

]
� 0 (16)

where

S̃(w)
A =

s∑

i,j=1

1

2
W̃(w)

ij

(
K

(i) − K
(j)
)T

AAT
(
K

(i) − K
(j)
)

S̃(b)
A =

s∑

i,j=1

1

2
W̃(b)

ij

(
K

(i) − K
(j)
)T

AAT
(
K

(i) − K
(j)
)
. (17)

IV. EXPERIMENTS

In this section, we provide extensive evaluations on the
configurations of the spatial pyramid features, the differ-
ent strategies for combining multiple features, and also the
performance comparison with the state-of-the-art methods.

A. Data Sets and Experimental Protocols

1) Data Sets Description: We choose four publicly
available benchmark datasets for person Re-Id, including
VIPeR [68], CUHK01 [69], PRID2011 [70], and 3DPeS [71].
Each image is resized into a fixed size 128×48. Some example
images are shown in Fig. 7.

VIPeR contains 632 pedestrian image pairs with obvious
viewpoint and illumination changes from two cameras in an
academic campus. Most pairs have at least 90◦ intraclass
angular variation.

CUHK01 is composed of 971 pedestrian images from two
cameras. Each individual has two images per camera.

PRID2011 consists of 385 individuals from camera A and
749 individuals from camera B, where only the first 200
pedestrians appear in both camera views.

3DPeS contains numerous video sequences taken from a
real outdoor surveillance scenario with eight camera views. It

totally consists of 1011 images of 192 individuals, where each
individual has 2–26 images.

2) Experimental Settings: We randomly and evenly divide
each dataset, except PRID2011, into training set and testing
set. In PRID2011, we use 100 of the 200 pedestrians appear
on both camera views for training and use the rest 100 pedes-
trians with the extra of 549 pedestrians which only appear on
camera B for testing.

In the testing phase, the single-shot matching mechanism is
adopted, and the matching result is recorded using the cumu-
lative match characteristic (CMC) performance curves. Each
experiment is repeated ten trials and the average accuracy is
recorded.

In our experiment, we apply kLFDA [66] as the metric
learning model to evaluate the features extracted with differ-
ent parameter settings, and as the base model to constitute
the final multiple kernel learning model. The dimension of
each spatial pyramid feature is reduced to 300 by PCA, except
for PRID2011, which is reduced to 100. In kLFDA, we use
Gaussian kernel κ(x, x′) = exp (−(||x − x′||2/2σ 2)). As we
do not normalize features after PCA, the Euclidean distance
between each two feature vectors is around 100. Thus, the
bandwidth parameter σ is set as 100 for all kinds of fea-
tures. The number of the nearest neighbors for computing
the affinity matrix is set to 2 for CUHK01 and 1 for others,
and the regularization parameter for class scatter matrix is set
to 0.01.

B. Details in Spatial Pyramid Statistical Features

In our framework, we construct spHist, spHOG, and spLBP
from each single color channel, separately, and then concate-
nate them into the whole multiple color channel features.

For spHist, the visual vocabulary consists of the centrals of
eight equant histogram bins in each intensity channel, and the
whole spHist feature has a length of 8 × 436 × 3.

For spHOG, we use 18 orientation bins which are spaced
evenly over 0 to 2π . Moreover, the concatenation grouping
strategy is used to compute block features and the dimen-
sion of each block normalized histogram is extended to 72.
Therefore, a 72 × 95 × 3-D spHOG will be extracted for each
color image.

For spLBP, we use 3 × 3 neighborhood to compute LBP,
and thus obtain 59 uniformed patterns. The final spLBP has a
length of 59 × 95 × 3.

For spCN, the color distribution is described by quantifying
the 3-D color space jointly into N color names. We use 16
color names as in [23]. Therefore, the total dimension of an
spCN feature is 16 × 436.

For spCov, we take more color information into the basic
feature set by using multiple intensity channels generated from
different color spaces, and concatenate them as follows:

[
x, y, |Gx|, |Gy|, L, A, B, H, S, Vhsv, Y, U, Vyuv

]
(18)

where L, A, B, H, S, Vhsv, Y, U, and Vyuv denotes different
intensity channels. Thus, a 13 × 13 matrix descriptor can be
computed from each cell. In addition, the mean vector is also
used, and thus an spCov feature of (91 + 13)× 95 is obtained
for each input image.
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TABLE II
TOP r MATCHING ACCURACY ON VIPER USING SPHIST

WITH DIFFERENT PARAMETER SETTINGS

C. Evaluation on Configuration Details of Five Spatial
Pyramid Statistical Features

While specific spatial pyramid-based statistical feature can
be extracted via the proposed framework, different configu-
rations may change the performance dramatically. Thus, it is
necessary to systematically evaluate the detailed configurations
and exploit the optimal one for person Re-Id.

In this paper, we compare different configurations step
by step following the feature extraction pipeline, and con-
duct extensive experiments on the commonly used benchmark
dataset VIPeR. For fair comparison, all configuration param-
eters are set as the same as default in Table I except the one
on which we are evaluating. Concretely, we adjust the set-
tings of input color spaces (RGB, HSV, YUV, LAB, or Gray),
encoding methods (HE, KCE, LIE, or SCE), integral channel
types (original or convolutional), local contrast normaliza-
tions (�1-norm, �1-sqrt, �2-norm, �2-clip, or �2

1-norm), pooling
methods (max or average pooling), number of scales (single-
scale or multiscale) and global normalizations (�1-norm or
�2-norm). The comparison results of using different features
are listed in Tables II–VI, respectively.

1) Input and Primary Channels: The color spaces and the
primary channels contain the raw visual information, which
is crucial to constructing higher-level statistical features for
Re-Id. For spHist [Table II(a) versus (c)–(e)], using HSV color
space yields a better illumination invariant color histogram
and improves the rank 1 matching rate of 19.53%, 10.41%,
and 8.89% than RGB, YUV, and LAB, respectively. For
spHOG [Table III(a) versus (c)–(f)] and spLBP [Table IV(a)
versus (c)–(f)], due to the color information is more crucial
than the texture for Re-Id task, extracting the gradient or LBP
features from color space can attain higher accuracy than only
from the gray intensity space, and that is also the main rea-
son of the remarkable performance improvement comparing
with the original HOG and LBP, which only reach 5.16%
and 4.21% at rank 1. As the color names are defined explic-
itly for RGB and HSV, e.g., a red pixel is [1, 0, 0]T in RGB
space and is [0, 1, 1]T in HSV, mapping the pixel intensity

TABLE III
TOP r MATCHING ACCURACY ON VIPER USING SPHOG

WITH DIFFERENT PARAMETER SETTINGS

TABLE IV
TOP r MATCHING ACCURACY ON VIPER USING SPLBP

WITH DIFFERENT PARAMETER SETTINGS

into the color names space is more proper in these color
spaces, and the higher accuracy [Table V(a) versus (c)–(e)],
i.e., 20.13% and 21.17%, can be achieved, respectively. For
spCov [Table VI(a) versus (c)], by including the color informa-
tion into the inputs and primary channels (as shown in Table I),
the rank 1 accuracy is promoted even 30.57% comparing with
the gray version. This confirms that using color information
and enriching the diversity of the primary channels is an effec-
tive way to enhance the discriminability of the features for
Re-Id task.

2) Encoding Methods: The way to generate the advanced
channels is critical in constructing the higher-level features. It
is well known that using the encoded or multiplied channels
facilitates the computing of the histogram or covariance fea-
tures. Unfortunately, histogram achieves good robustness via
quantifying the primitive image characters into discrete bins
with the inevitable quantization error. The original color his-
togram utilizes the hard voting to encode. In our experiments,
using the kernel codebook encoding or linear interpolation
method [Table II(a) and (h) versus (i)], the rank 1 match-
ing rate can get 3.26% or 2.98% improvement. Although the
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TABLE V
TOP r MATCHING ACCURACY ON VIPER USING SPCN

WITH DIFFERENT PARAMETER SETTINGS

TABLE VI
TOP r MATCHING ACCURACY ON VIPER USING SPCOV

WITH DIFFERENT PARAMETER SETTINGS

original HOG feature uses the linear interpolation to diminish
the quantization error, it can be further optimized by taking
advantage of the kernel codebook method and achieves 3.54%
improvement at rank 1 [Table III(a) versus (i)]. However, it is
important to note that inappropriate parameter settings for ker-
nel codebook encoding will lead to suboptimal performance.
For example, we observe 3.57% or 1.42% accuracy drop at
rank 20 when set γ = 1/24 or 1/6 for spHist [Table II(a)
versus (f) and (g)], and 3.04% or 4.05% accuracy drop at
rank 1 when set γ = π/18 or π/2 for spHOG [Table III(a)
versus (g) and (h)]. For spCN [Table V(a) versus (f)–(i)], the
salient color encoding method proposed in [23] achieves the
best performance 20.13% at rank 1 compared with the hard
encoding and kernel codebook encoding. These confirm that,
the choice of the encoding methods plays an important role in
the histogram features extraction.

3) Integral Channels: Integrated channels are introduced as
the intermediate channels to speed up the rectangular-based
statistical features extraction. By using the convoluted inte-
grated channels, the spatial aliasing problem can be reduced.
Compared with the features extracted via the original inte-
grated channels, the matching rate can be improved slightly
via the convoluted channels (Tables II(a) versus (j), III(a)
versus (k), IV(a) versus (g), and V(a) versus (j)], e.g., the
rank 5 accuracy is boosted 0.38%, 3.19%, 2.7%, and 0.45%
for spHist, spHog, spLBP, and spCN, respectively. Another

observation is that using convoluted integrated channels has
more effects on the Re-Id performance when extracting 8 × 8
cell-based texture features than 4×4 cell-based color features.

4) Local Contrast Normalizations: The illumination or
background varies across the images. Thus, the local contrast
normalization is necessary to obtain stable local features. We
evaluate two different grouping strategies and five different
local normalization schemes (as in Remark 1) in our exper-
iments. For spHOG extraction [Table III(a) versus (m)–(p)],
the �2

1-norm normalization scheme improves the rank 1 accu-
racy from 23.07% to 26.58%. For other features extraction
[Tables II(a) versus (l)–(o), IV(a) versus (i)–(l), V(a) ver-
sus (l)–(o), and VI(a) versus (e) and (f)], different schemes
make only nuanced performance fluctuation within the range
of 1.5% to 2.3%. However, without the local contrast nor-
malization, the accuracy will drop significantly [Tables II(a)
versus (k), III(a) versus (l), IV(a) versus (h), V(a) versus (k),
and VI(a) versus (d)], e.g., the rank 1 accuracy decrease from
35.19% to 31.52% for spHist, from 26.58% to 17.44% for
spHOG, from 20.32% to 14.18% for spLBP, from 20.13% to
16.27% for spCN, and from 34.91% to 18.77% for spCov.

5) Multiscale Pooling and Multiscale Features
Concatenation: Pooling and multiscale features concatenation
are crucial for constructing hierarchical features, and make
the representation more robust to the local transformation
and local misalignment. In some feature vectors, the salient
(or prominent) components make greater contributions to the
identification task, so the max pooling leads to better perfor-
mance, e.g., spHOG gets 2.12% improvement at rank 1 using
max pooling than average pooling [Table III(a) versus (q)].
However, these improvements are not that significant
[Tables II(a) versus (p), IV(a) versus (m), V(a) versus (p),
and VI(a) versus (g)]. We also compare each statistical
feature of the single-scale to the multiscale. According to the
experimental results [Tables II(a) versus (r), III(a) versus (s),
IV(a) versus (o), V(a) versus (r), and VI(a) versus (j)], the fea-
tures from multiscale yield better performance. Specifically,
on the rank 5, matching rate is improved 0.32%, 8.51%,
4.50%, 3.14%, and 3.76% with respect to spHist, spHOG,
spLBP, spCN, and spCov, separately. However, different nor-
malization strategies, e.g., �1-norm or �2-norm, on each spatial
resolution features for concatenation have little effect on the
final performance [Tables II(a) versus (q), III(a) versus (r),
IV(a) versus (n), V(a) versus (q), and VI(a) versus (i)].

In addition, for spCov, it is important to mention that
including the mean vector (i.e., first-order statistics) into the
covariance feature (i.e., second-order statistics) boosts the fea-
ture performance significantly, i.e., from 30.38% to 34.91% at
rank 1 [Table VI(a) versus (h)].

D. Comparison to the Original Features

We compare the performance of the spatial pyramid statisti-
cal features extracted in the proposed framework to the original
features on four benchmark datasets, where all the parameter
settings are the same as the configurations in Table I. Although
the five specific sp-features have different degrees of effect on
the performance improvement for Re-Id task, e.g., on VIPeR
[Fig. 8(a)], spHist and spCov achieve 35.19% and 34.19%
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(a) (a)

(d)(c)

Fig. 8. Results on different datasets reported as averaged CMC curves. (a)–(d) Comparisons between spatial pyramid statistical features and their corresponding
original features on four benchmarks are shown, respectively.

rank 1 matching rate, but spLBP and spCN only achieve
20.32% and 20.13%, or even the relative merits of the features
vary across different datasets, e.g., spHist achieves the best
accuracy than other features on VIPeR [Fig. 8(a)], but only
achieves the moderate accuracy on PRID2011 [Fig. 8(c)], all
the experiment results in Fig. 8 show a consistent trend that
the sp-features perform significantly better than the original
ones. Be specific, compared to the original features, spHist
improves 6.71% at rank 1 matching accuracy on 3DPeS,
spHOG improves 21.42% matching rate on VIPeR, spLBP
improves 24.28% accuracy on CUHK01, spCN improves 2.7%
accuracy on PRID2011, and spCov even boosts the matching
rate at rank 1 with 31.9% on VIPeR.

To summarize, the performance gain of our proposed spatial
pyramid-based statistical features comes from multiple aspects
of our unified framework. Briefly, we use: 1) abundant input
primary channels to enhance the discriminability; 2) appro-
priate encoding methods to minimize the information loss;
3) proper contrast normalization to smooth the local varia-
tions; and 4) spatial pyramid hierarchical strategy to alleviate
the spatial misalignment.

E. Evaluation on Different MKL Methods

To obtain a better Re-Id accuracy, we use mkLFDA to
combine multiple features extracted in the proposed unified
framework. The optimal ensemble kernel is learned over a
kernel set consists of all the linear combination of nine basis
kernels [as (11)], including: five kernels from Gaussian kernel
function on all the features and four kernels from RBF χ2

kernel function κ(x, x′) = exp ((
∑

i((2xix′
i)/(xi + x′

i))/2σ 2))

on histogram features. Note that, when using RBF χ2 kernel,
the PCA step is ignored and the normalization parameter σ is
empirically set to 1 for spHist and 10 for other features. The
Re-Id accuracy of each kernel and the ensemble kernel are
shown in Fig. 9. In addition, we compare the performance of
ensemble kernel learned via mkLFDA to three different MKL
methods (i.e., arithmetic average method, geometric average
method, and kernel alignment method) and kLFDA with fea-
ture concatenation. Also we conduct a comparative experiment
by adopting CNN feature extracted via AlexNet, which has
been pretrained on ImageNet and fine-tuned on each dataset,
respectively.
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(a) (b)

(c) (d)

Fig. 9. Results on different datasets reported as averaged CMC curves. (a)–(d) Comparisons between basis kernels and ensemble kernels on four benchmarks
are shown, respectively.

1) Arithmetic Average Method: The ensemble kernel is
simply constructed by the arithmetic average of all kernels,
i.e., κ(x, x′) = (1/P)

∑P
p=1 κ(p)(x, x′).

2) Geometric Average Method: The ensemble kernel is
simply constructed by the geometric average of all kernels,

i.e., κ(x, x′) = P
√∏P

p=1 κ(p)(x, x′).
3) Kernel Alignment Method: Define the ker-

nel alignment between two kernels as A(κi, κj) =
(〈Gi, Gj〉F/

√〈Gi, Gi〉F〈Gj, Gj〉F), where G is the corre-
sponding Gram matrix. The combination weight of each
kernel is determined by its kernel alignment with respect to
the target kernel κ̂ , i.e., βp = (A(κ(p), κ̂)/

∑P
p=1 A(κ(p), κ̂)).

In this paper, we set the element value in the target Gram
matrix as 1 if the corresponding data pair is in the same
class, and 0 otherwise.

4) mkLFDA: In our experiment, instead of initialize A, we
initialize the parameter AAT as an identity matrix. Although
we are not able to provide the theoretical guarantee for conver-
gence of mkLFDA, we observe that the alternating algorithm
converges rapidly in only a few iterations in experiments.

According to the experimental results on the four bench-
mark datasets as in Fig. 9, we observe that the ensemble

kernel improves the performance significantly, even just using
the simplest average combination. Compared to the other three
MKL algorithms and kLFDA, mkLFDA obtains a better Re-Id
accuracy. Particularly, the rank 1 matching rate is boosted
to 44.60% on VIPeR, to 55.97% on CUHK01, to 22.60%
on PRID2011, and to 54.26% on 3DPeS, respectively. We
also observe that CNN features perform comparably with our
hand-crafted features, but can further boost the performance
when fused with our approach. For example, by adopting
the CNN feature into our mkLFDA framework, the rank 1
matching rate on dataset CUHK01 has been improved from
56.0% to 61.5%.

F. Comparison to the State-of-the-Art

To demonstrate the effectiveness of the proposed framework
on person Re-Id task, we also compare our approach to many
existing methods. These methods can be roughly divided into
six groups.

1) Multifeature fusion (Ensemble [72], LateFusion [73],
and ELF [74]).

2) Feature extraction/learning (MidFilter [22], MTL [26],
Transfer [27], SCNCD [23], ExplicitPoly [21],
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TABLE VII
TOP r MATCHING ACCURACY ON VIPER USING OUR

APPROACH AND STATE-OF-THE-ART METHODS

SalMatch [6], Salience [16], ColorInv [19],
ViewInv [20], eBiCov [75], SDALF [5], and
Attribute [28]).

3) Metric learning (MLAPG [33], XQDA [7],
KernelML [15], RMLLC [34], LADF [9], LAFT [18],
MtMCML [35], RPLM [36], FuncSpace [39],
LFDA [11], KISSME [8], PCCA [10], RDC [12],
and PRDC [37]).

4) Deep learning (ImprDeep [29] and DeepReid [30]).
5) Dictionary learning and sparse representation

(CPDL [45], ISR [44], and SSCDL [17]).
6) Others (MirrorRep [49], CSL [48], and

CompTemp [31]).
The matching rates are directly cited from tables or figures
provided in the relevant literatures.

We present the comparison results in Tables VII–X, while
marking the first (bold red) and second (bold blue) best perfor-
mance out. We observe that our approach obtains comparable
performance with respect to the state-of-the-art methods on all
the four datasets, and even surpasses some of them.

Specifically, VIPeR has been tested with dozens of meth-
ods so far. Our approach achieves the second-best result on
it, with only a narrow gap with the best one. On the medium
dataset CUHK01, we get state-of-the-art result compared to

TABLE VIII
TOP r MATCHING ACCURACY ON CUHK01 USING OUR

APPROACH AND STATE-OF-THE-ART METHODS

TABLE IX
TOP r MATCHING ACCURACY ON PRID2011 USING OUR

APPROACH AND STATE-OF-THE-ART METHODS

TABLE X
TOP r MATCHING ACCURACY ON 3DPES USING OUR

APPROACH AND STATE-OF-THE-ART METHODS

TABLE XI
TIME COST ANALYSIS OF OUR PROPOSAL ON VIPER

all the others, including multifeature fusion and deep lean-
ing methods, e.g., 8.1% and 14.0% rank 1 accuracy have
been improved separately. Besides, if the gallery and probe
images are selected randomly from the dataset without con-
sidering the camera label, CPDL [45] can get a 59.47%
rank 1 accuracy on CUHK01. While under the same partition
scheme, our approach can easily get a higher rank 1 accu-
racy as 62.59%. On the more practical dataset PRID2011,
our method still achieves state-of-the-art performance, and
boosts the performance significantly, e.g., 5.1% improvement
at rank 1. As the images in dataset 3DPeS are very irregu-
lar and there does not exist a single stable mapping between
pairwise images, using only kLFDA in our method did not
catch up with state-of-the-art. However, our approach is still
comparable with or better than other feature fusion, feature
extraction/learning, and deep learning-based methods.
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G. Analysis of Time Cost

Although variant spatial pyramid statistical features and
features fusion strategies are used in the framework, the exe-
cution efficiency is still acceptable for Re-Id task. Table XI
shows that, taking VIPeR for example, the most time con-
suming phase is training mkLFDA model over the whole
training dataset.3 Once the model is trained, each image can
be reidentified quickly within 1 second.

V. CONCLUSION

We have proposed and evaluated a unified framework
to utilize spatial pyramid-based statistical features for per-
son Re-Id. In this framework, three types of image sta-
tistical characteristics are computed conveniently, including
histogram distribution, mean vector, and covariance matrix.
Specifically, we have implemented five spatial pyramid based
statistical features, i.e., spHist, spHOG, spLBP, spCN, and
spCov, and combined them via mkLFDA. Extensive evalu-
ations on benchmark datasets have shown that using abun-
dant input primary channels, appropriate encoding methods,
proper contrast normalization schemas, and spatial pyramid-
based hierarchical features aggregation are all beneficial to
improve the performance. Experiment results have demon-
strated that our approach could catch up with state-of-the-art
or even significantly improve the best performance on some
practical Re-Id scenarios. We hope that this paper could
provide useful guidelines for researchers and practition-
ers to deploy well performed Re-Id system for real world
applications.
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