Object Part Parsing with Hierarchical Dual Transformer
Jiamin Chen, Jianlou Si, Naihao Liu, Yao Wu, Li Niu, and Chen Qian
In ACMM, Ottawa ON, Canada, 2023
Object part parsing involves segmenting objects into semantic parts, which has drawn great attention recently. The current methods ignore the specific hierarchical structure of the object, which can be used as strong prior knowledge. To address this, we propose the Hierarchical Dual Transformer (HDTR) to explore the contribution of the typical structural priors of the object parts. HDTR first generates the pyramid multi-granularity pixel representations under the supervision of the object part parsing maps at different semantic levels and then assigns each region an initial part embedding. Moreover, HDTR generates an edge pixel representation to extend the capability of the network to capture detailed information. Afterward, we design a Hierarchical Part Transformer to upgrade the part embeddings to their hierarchical counterparts with the assistance of the multi-granularity pixel representations. Next, we propose a Hierarchical Pixel Transformer to infer the hierarchical information from the part embeddings to enrich the pixel representations. Note that both transformer decoders rely on the structural relations between object parts, i.e., dependency, composition, and decomposition relations. The experiments on five large-scale datasets, i.e., LaPa, CelebAMask-HQ, CIHP, LIP and Pascal Animal, demonstrate that our method sets a new state-of-the-art performance for object part parsing.